Matematika adalah subjek yang menarik dan penting dalam kehidupan sehari-hari. Salah satu konsep utama dalam matematika adalah integral. Dalam artikel ini, kami akan membahas integral mulai dari konsep dasar hingga contoh soal dengan jawabannya yang mudah dimengerti oleh anak-anak sesuai dengan kurikulum terbaru.Integral tak tentu dapat digunakan untuk menyelesaikan permasalahan-permasalahan di bawah ini Untuk menentukan suatu fungsi turunan jika fungsinya diberikanUntuk menentukan posisi, kecepatan, dan percepatan suatu benda pada waktu tertentu. Misalnya s menyatakan posisi benda, kecepatan benda dinyatakan dengan v, dan percepatan benda dinyatakan dengan a. Hubungan antara s,v, dan a adalah sebagai berikut. \[ v=\frac{ds}{dt} \] \[ s=\int v dt \] \[ a=\frac{dv}{dt} \] \[ v=\int a dt \] Contoh Soal Agar lebih memahami aplikasi integral tak tentu, perhatikan contoh soal berikut ini Diketahui \ f'x = 6x^2 – 10x + 3 \ dan \ f-1 = 2 \ . Tentukan \ fx \ ! Jawab \[\begin{aligned} f'x &=6x^{2}-10x+3\\ fx &=\int 6x^{2}-10x+3dx\\ &=2x^{3}-5x^{2}+3x+c\\ f-1 &=2\\ 2 &=2-1^{3}-5-1^{2}+3-1+c\\ 2 &=-2-5-3+c\\ c &=12 \end{aligned}\] Jadi, \fx=2x^{3}-5x^{2}+3x+12\ 2. Sebuah benda bergerak pada garis lurus dengan percepatan a yang memenuhi persamaan \a=2𝑡−1\, 𝑎 dalam \𝑚/𝑠^{2}\ dan t dalam detik. Jika kecepatan awal benda 𝑣=5 𝑚/𝑠 dan posisi benda saat \t=6\ adalah \𝑠=92 𝑚\, maka tentukan persamaan posisi benda tersebut saat t detik! Jawab \[ a=2t-1 \] \[ v=\int a dt \] \[ v=\int 2t-1dt=t^{2}-t+c \] Kecepatan awal benda \5 m/s\, artinya saat \t=0\ nilai \v=5\ \[\begin{aligned} v_{t=0} &=5\\ 0^{2}-0+c &=5\\ c &=5 \end{aligned}\] Seingga \[\begin{aligned} v &=t^{2}-t+5\\ s &=\int vdt\\ &=\intt^{2}-t+5dt\\ &=\frac{1}{3}t^{3}-\frac{1}{2}t^{2}+5t+d \end{aligned}\] Untuk \s_{t=6} =92\ \[\begin{aligned} \frac{1}{3}6^{3}-\frac{1}{2}6^{2}+56+d &=92\\ 72-18+30+d &=92\\ 84+d &=92\\ d &=8 \end{aligned}\] Jadi, persamaan posisi benda tersebut saat t detik dirumuskan dengan \[ s=\frac{1}{3}t^{3}-\frac{1}{2}t^{2}+5t+8 \] Materi Lengkap Berikut adalah materi lainnya yang membahas mengenai Integral. Tonton juga video pilihan dari kami berikut ini
Bappenas sedang menyusun peta jalan pengembangan sumber daya manusia menuju pekerjaan hijau. Dalam menghadapi krisis iklim, katanya, transisi ke pekerjaan hijau bisa menjadi bagian integral dalam kehidupan sehari-hari dan menciptakan dampak positif. Peta jalan ini dikembangkan untuk menuju ekonomi hijau yang berkeadilan.
Ketika belajar Matematika, Sobat Zenius pasti pernah menemukan istilah Kalkulus, kan? Nah, dalam kalkulus ada materi yang bernama integral. Dalam artikel ini gue akan mengajak elo semua buat membahas materi integral tentu kelas 12 beserta rumus dan contoh soalnya. Selain integral, dalam Kalkulus juga ada dua materi lainnya seperti limit dan turunan. Limit, turunan, dan integral menjadi materi-materi yang harus elo hadapi saat duduk di bangku SMA. Integral sendiri adalah kebalikan dari turunan, fungsinya untuk menemukan area/daerah, volume, titik pusat, dll. Integral pun nantinya terbagi dua yaitu integral tentu definite integral dan integral tak tentu indefinite integral. Oke kita mulai aja membahas jenis integral yang pertama, yaitu integral tentu, cekidot! Apa Itu Integral Tentu?Sifat Integral TentuRumus Integral Tentu dan Cara Menghitung IntegralContoh Soal Integral Tentu Apa Itu Integral Tentu? Seperti biasa, sebelum gue membahas mengenai rumus integral tentu. Kita akan kenalan dulu sama pengertian dari integral tentu. Dari namanya udah jelas ada kata “tentu”, berarti integralnya udah ditentukan dong? Bener kan? Apa gimana sih? Yap, betul. Jadi, pengertian dari integral tentu adalah integral yang udah ditentukan nilai awal dan akhirnya, ada rentang a-b. Nah, a-b merupakan batas atas dan bawah. Kalau di integral tak tentu, bentuknya seperti ini Sehingga, grafik yang digambarkan dari integral tak tentu akan seperti ini. Gambar grafik integral tak tentu Arsip Zenius Sedangkan, untuk integral tentu atau definite integral yang udah diketahui batas a dan b-nya, maka bentuk integralnya seperti di bawah ini Nah, karena batasnya udah diketahui, maka grafik integral tentu ini bisa digambarkan sebagai berikut Gambar grafik integral tentu sudah diketahui batas atas dan bawahnya. Arsip Zenius Jelas kan sekarang perbedaannya antara integral tak tentu dengan integral tentu? Sekarang, kalau elo tanya, fx dan dx itu apa? Dalam integral, ada suatu fungsi ーfxー yang akan diintegrasikan terhadap variabel x ーdx. Cara membaca integral tentu adalah sebagai berikut Integral dari fx terhadap dx dari b sampai a Ngomong-ngomong nih, Sobat Zenius tau gak sih kalau materi integral tentu dan integral tak tentu adalah salah satu materi yang sering keluar di UTBK SBMPTN lho. Selain materi ini, ada beberapa materi Matematika SMA lainnya lho yang sering keluar. Kalau mau tau daftar materi dan contoh soal yang sering diujikan, klik aja langsung banner di bawah ini ya! Download Aplikasi Zenius Fokus UTBK untuk kejar kampus impian? Persiapin diri elo lewat pembahasan video materi, ribuan contoh soal, dan kumpulan try out di Zenius! Sifat Integral Tentu Seperti belajar memahami doi, elo gak perlu hafal semua sifat-sifatnya, yang penting elo paham. Dengan elo memahami sifat-sifatnya, maka elo juga akan semakin tau cara menaklukannya. Sama seperti ketika elo belajar memahami integral tentu. Salah satu materi integral kelas 12 ini juga memiliki sifat-sifat tertentu antara lain adalah 1. . 2. . 3. . 4. . 5. . 6. . Nah, sifat-sifat di atas gak perlu elo hafalkan, yang penting elo paham konsep dari integral tentu. Kenapa harus paham? Karena, sifat-sifat inilah yang nantinya akan memudahkan elo dalam menyelesaikan kasus definite integral. Rumus Integral Tentu dan Cara Menghitung Integral Setelah elo tau seperti apa konsep dan sifat dari integral tentu, maka elo perlu tau gimana sih rumus integral tentu dan cara menghitungnya. Pertama-tama coba elo perhatikan rumus integral tentu di bawah ini! Integral dari fx terhadap dx dari b sampai a adalah Fa dikurangi Fb. Dengan F'x adalah fungsi yang turunannya bernilai fx Hasil dari definite integral adalah suatu angka yang pasti. Bisa dibilang, Sobat Zenius sudah mempelajari keseluruhan materi integral kelas 12, mulai dari pengertian, sifat, hingga rumusnya. Nah, untuk menguji pemahaman elo, gue ada beberapa contoh soal integral tentu yang bisa Sobat Zenius pelajari. Contoh Soal 1 Tentukan ! Jawab Kita memiliki fungsi fx = 3x2. Dengan definite integral, maka kita akan memperoleh kalau integral tak tentu harus ditambah C, sedangkan integral tentu gak ditambah C. Rumus integral tak tentu Arsip Zenius Lalu, kita substitusikan batas atas dan bawahnya ke dalam hasil fx = x3. Batas atas = 2 –> f2 = 23 = 8. Batas bawah = 1 –> f1 = 13 = 1. Maka, = f2 – f1 = 8 – 1 = 7. Contoh Soal 2 Kita lanjut ke contoh soal integral tentu yang kedua. Tentukan ! Jawab Dengan menggunakan rumus axndx dan langsung disubstitusi batas atas dan bawahnya, maka diperoleh hasil sebagai berikut Jadi, hasil dari adalah . Nah, supaya pemahaman elo makin matang, gak cuman tentang materi integral tentu kelas 12 aja, elo bisa banget, nih, belajar dari video pembelajaran yang dibawakan oleh tutor-tutor Zenius. Nggak cuman materi, elo juga bisa mendapatkan beragam contoh soal yang bisa dijadikan bahan latihan. Berbagai paket belajar yang seru dan lengkap ini bisa elo dapetin di sini. Ada paket murah meriah juga yang bisa elo coba! Klik banner di atas untuk langganan Zenius Ultima Lite sekarang! Tapi kalau Sobat Zenius ingin belajar lebih dalam soal materi di atas lewat video, elo tinggal klik banner di bawah ini ya. Baca Juga Artikel Lainnya Rumus Peluang dan Aplikasinya dalam Kehidupan Sehari hari Rumus Kombinasi dan Permutasi, Apa Sih Perbedaannya? Statistika Rumus Desil dan Rumus Persentil Originally published October 5, 2021Updated by Maulana Adieb dan Sabrina Mulia Rhamadanty